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ABSTRACT
Statistical shape modeling (SSM) is an emerging tool for risk assessment of thoracic aortic aneur-
ysm. However, the head branches of the aortic arch are often excluded in SSM. We introduced
an SSM strategy based on principal component analysis that accounts for aortic branches and
applied it to a set of patient scans. Computational fluid dynamics were performed on the recon-
structed geometries to identify the extent to which branch model accuracy affects the calcu-
lated wall shear stress (WSS) and pressure. Surface-averaged and location-specific values of
pressure did not change significantly, but local WSS error was high near branches when inaccur-
ately modeled.
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Introduction

Aneurysms are characterized by dilation of a segment
of an artery, leading to risk of further inflation,
delamination, or rupture. They can develop in various
locations, including the thoracic aorta, abdominal
aorta, and cerebral vessels. The focus of this study is
thoracic aortic aneurysm (TAA) with particular atten-
tion to the aortic arch. Though the expansion of the
vessel in itself is largely asymptomatic, a rupture or
dissection of the affected region is a highly lethal car-
diothoracic emergency with a post-operative mortality
rate of up to 25% (Harky et al. 2019). The diagnosis
and treatment of TAAs remains challenging. It is esti-
mated that only 5% of TAAs are symptomatic prior
to rupture or dissection, and even within symptomatic
cases, more than half of them are not diagnosed until
a post-mortem examination is performed (Elefteriades
et al. 2015).

Of particular interest are methods that use compu-
tational fluid-structure interaction models to assess
the mechanical state of the aneurysm and aorta and
predict rupture or dissection. Such approaches have
been applied to human data (Leo et al. 2019) and
mouse models (Trachet et al. 2015; Bazzi et al. 2022),

and inverse methods based on biofluid and solid
mechanics have been used to assess aortic wall stiff-
ness (Bertoglio et al. 2012; Farzaneh et al. 2019).
There is also potential for combining patient-specific
geometry with fluid-structure interaction simulations
to gain mechanical insight from pulse wave velocity
measurements (Shahmirzadi and Konofagou 2014).
However, the computational demand of such simula-
tions is high, and there is a relative lack of large data-
sets that could be used to fitting/training and testing
a correlative model, these challenges have led to con-
siderable interest for reduced-simulation representa-
tion of the aorta and the potential to generate
synthetic aortic geometry (Romero et al. 2019). For
such problems, statistical shape models (SSMs) are
particularly attractive.

SSMs capture and describe the geometry of seman-
tically similar objects and have become increasingly
popular in biomedical research by virtue of their abil-
ity to recover intuitive variations in morphological
features. TAAs have been studied under the SSM
framework (Bruse et al. 2017; Liang et al. 2017;
Catalano et al. 2021), demonstrating its potential to
correlate geometric features with clinically relevant
metrics such as rupture risk (Cosentino et al. 2020).
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These SSMs, however, considered only the ascending
and descending portion of the thoracic aorta and
removed the branching head vessels of the aortic
arch: the brachiocephalic artery (BCA), left subclavian
artery (LSA), and left common coronary
artery (LCCA).

The presence of these branches could affect the
blood flow profile close to the branches, introducing
regions of recirculation, and skewing the peak velocity
toward the branch junction (Chen and Lu 2004).
These recirculation regions could generate low wall
shear stress (WSS) and create a propensity to develop
atherosclerotic lesions in the ascending aorta (Endo
et al. 2014). Subjects with abnormal branching var-
iants of the aortic arch were also found to have
increased risk of developing thoracic aortic disease
(McMurry et al. 2015), including type B aortic dissec-
tion (Shalhub et al. 2018). Moreover, total removal of
head branches in a flow study on aortic dissection
subjects could significantly reduce the downstream
WSS values (Jiang et al. 2019).Given the possibility
that these branches play a significant role in the
mechanics experienced by the aorta, the inclusion of
the branches into the SSM is highly desirable.

In this work, we developed an SSM scheme that
allows inclusion of the branch vessel locations in the
shape function, and we tested the approach on a set
of patient scans. The geometrical accuracy of the
reconstructed SSM was quantified, and changes in the
flow dynamics within the reconstructed aorta were
examined using computational fluid dynamic (CFD)
simulations. Of particular interest is the extent to
which these branches have to be modeled accurately
and the effect of misrepresentation of the branches on
the flow dynamics in the aorta. The capability of the
proposed model to generate synthetic data from the
shape basis was also demonstrated.

Methods

We extended the standard SSM framework (Liang
et al. 2017) to permit incorporation of the location of
the head vessels into the shape descriptor. A general
SSM framework is described as follows, with the new
branch modeling step marked in italics (Figure 1):

1. Geometry extraction: 3D, patient-specific geom-
etry is extracted from segmented medical
image data.

2. Aorta parameterization: The aorta is parameter-
ized onto a periodic rectangular parametric

domain defined by the longitudinal and circum-
ferential axes.

3. Branch modeling: The location of branches on the
aorta is described using a levelset of geodesic dis-
tance of branch boundary, as defined over the
parameterization space.

4. Principal component analysis: Principal compo-
nent analysis (PCA) is used to extract the domin-
ant shape modes from the remeshed geometries.

5. Artificial geometry generation: New geometries
can be artificially generated using the SSM.

Each of these steps is detailed below, followed by a
description of computational fluid dynamics (CFD)
studies done to evaluate the SSM performance.

Geometry extraction

A total of 33 patient datasets were obtained. Aortic
models of 24 patient models were obtained from the
publicly available Vascular Model Repository (Wilson
et al. 2013). The rest were obtained from MRI of sub-
jects with Marfan syndrome, provided from
Washington University in St. Louis. Detailed patient
descriptions are available from the repository, and a
summary is given in supplementary material 1. Five
additional aortas, obtained from Radl et al. (2022),
were not used for principal component generation
but were reconstructed to benchmark the fit of recon-
structed geometry on general population.

The aortic geometries were segmented and
extracted from 3D medical images (Figure 1(a,b)),
using Simvascular (Updegrove et al. 2017) to generate
meshes of the thoracic aorta, including the aortic
root, the head branches, and descending thoracic
aorta. The head branches were truncated with a plane
tangent to the surface of the aortic arch in
MeshMixer (Autodesk Inc. 2018), offset by a few cen-
timeters in the downstream direction of the branch.
This truncation created branchless aortas to be used
for parameterization.

Aorta parameterization

Once the branchless aortic geometry had been
defined, its centerline was extracted using VMTK
(Izzo et al. 2018). This centerline did not span the full
aorta and was slightly truncated at the two ends. The
parametric domain was defined by a cylindrical
coordinate system, as described by the vessel radius
(r), polar angle (h 2 ½0, 2pÞ), and normalized length
along the centerline (s 2 ½0, 1�) from the aortic root
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(s¼ 0) to the distal end of the model (s¼ 1). The lon-
gitudinal axis of the cylinder was defined as the tan-
gent to the centerline, while the polar axes are found
on the plane perpendicular to the longitudinal axis.
Injectivity of the parameterization is ensured by
checking the maximum radius of the cylinder, which

must be less than the radius of the osculating sphere of

the centerline (C
!

). When this condition was not met,
the centerline was smoothed by moving average on its
curvature. The surface of aorta was then described
by the distribution of vessel radius on the (h, s)
plane (Figure 1(c)). Likewise, any surface-quantifiable

Figure 1. Methodology for branch-including statistical shape model of the aorta. (a) CT scan of the aorta. (b) Segmented geomet-
ric model. (c) Centerline/cylindrical parameterization of branch-free model. Points near the proximal end of the aorta (small s)
have larger rðs, hÞ values because of vessel taper. (d) Branch boundary signed distance function f(h, s). (e) Principal component
analysis decomposition of the shape function. (f) Reduced-dimension shape representation. (g) Synthetic aortic models generated
by random combinations of the principal components.
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values can be described in the shared parametric space
of (h, s).

Before geometrical comparison could be made, the
geometry had to be scaled and aligned. The meshes
were scaled isotropically by the same scale as was
used to normalize the centerline length to ½0, 1�: Once
scaled, the meshes were rigidly transformed to be
aligned based on generalized Procrustes analysis
(Goodall 1991).

Branch modeling

The presence of a branch generates additional holes
on the geometry. However, the presence of additional
holes violates the cylinder homeomorphicity con-
straint of the vessel. Instead, we define the presence
of a branch by an area on the aorta that is bounded
by a closed curve in (h, s) space. This curve marks the
location of these holes, which would only be excised
at the end of the branch modeling step. First, the
intersection of original geometry with a truncating
plane for each branch was used to generate the coor-
dinates of the bounding curve, which was mapped
onto the aortic surface by parameterization onto the
(h, s) space. Once the coordinates on the bounding
curve had been obtained in (h, s) space, the curve that
passed through these points was defined implicitly as
the level set of a function in the (h, s) domain.

The function chosen is based on logistic mapping of
a signed geodesic distance function (SGDF) in (h, s)
domain. The SGDF returns the minimum geodesic dis-
tance (G) from a given point x to the closed boundary
(@X), where the sign is determined by whether the
point lies on the interior (XI) or exterior (XE) of the
boundary. If the point is inside the boundary, the dis-
tance is assigned as negative, otherwise it is assigned as
positive. The SGDF (Gsigned) in the (h, s) is thus:

Gsignedðh, sÞ ¼
�G

�
xðh, sÞ, @X

�
, x 2 XI

0 , x 2 @X
G
�
xðh, sÞ, @X

�
, x 2 XE

8>><
>>:

G
�
x, @XÞ ¼ min

x2@X
kxðh, sÞ � @Xk (1)

For a point with physical coordinate x, the func-
tion Gðx, @XÞ returns the shortest geodesic distance
from x to a point on the boundary @X: Gðx, @XÞ was
computed on the triangular STL mesh using an exten-
sion of Dijkstra’s algorithm (Dijkstra 1959) as imple-
mented in Matlab (Kirsanov 2021).

The Gsigned distribution is not evenly weighted

between interior (XI) and exterior (XE) points, since
the vast majority of the aortic surface is outside of

the branch boundaries (i.e. in the positive Gsigned

space), resulting in a much larger range of positive
Gsigned values than of negative ones. The resulting
PCA bases would inevitably skew toward accommo-
dating the high positive Gsigned, but they would not
carry much information: any points far enough dis-
tance from the boundary would decidedly lie in XE:

Therefore, the magnitude of the Gsigned values was
capped via a logistic function (f ðh, sÞ), given as:

f h, sð Þ ¼ 2= 1þ e�
4Gsigned

k

� �
� 1

� �
k (2)

where k ¼ jminðGsignedÞj is the magnitude of the larg-
est negative SGDF across all cases. f ðh, sÞ symmetric-
ally caps the magnitude of positive and negative
SGDF, with the �3 dB cutoff at 0.6k: The boundary
of the branches can then be described as the curve
that is implicitly defined on (h, s) at f ðh, sÞ ¼ L,
where L is the level set. A plot of f vs. s and h is
given in Figure 1(d).

In the original geometry, the value of L is trivial as
the branch boundary is at geodesic distance of zero
([L ¼ 0). However, when reconstructing the aorta via
PCA, some information is lost, particularly the steep
gradient that delineates the branch boundary. With
fewer principal components (small NPC), the recon-
structed f ðh, sÞ may not cross L ¼ 0, but the minima
in f ðh, sÞ that should define dX is still present.
Therefore, the value of L is dynamically changed by
an auto-thresholding algorithm (Ridler and Calvard
1978) on points with f h, sð Þ < ð0:5� jminðGsignedÞjÞ:
Once the location of a branch was determined, the
branch was extruded in the direction of the mean sur-
face normal of the points found in the branch lumen
(XI). Fourier smoothing was performed on dX to
obtain a more circular outlet area and simplify
the meshing.

Principal component analysis

PCA (Pearson 1901) is a fundamental dimension
reduction technique. Specifically, it builds a hierarch-
ical coordinate system that captures the most domin-
ant statistical variations seen in a data set. The steps
involved in PCA are described below, within the con-
text of SSM for TAAs.

First a shape descriptor matrix M of size N �
ð3Ns þ 2NhNsÞ was constructed, where N is number
of aortas being studied, while Ns and Nh are number
of discretized sample points along s and h direction,
taken to be 200 points in each direction for the cur-

rent study. Each row vector of M (i.e. X
!ðnÞ

) acts as a
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shape descriptor of the aorta in a patient (n), follow-
ing equation:

M ¼

X
!ð1Þ

..

.

X
!ðnÞ

..

.

X
!ðNÞ

2
66666664

3
77777775
¼

C
!ð1Þ

p!ð1Þ

..

.

C
!ðnÞ

p!ðnÞ

..

.

C
!ðNÞ

p!ðNÞ

2
666666664

3
777777775

C
!ðnÞ ¼ x̂ðnÞ1 ŷðnÞ1 ẑðnÞ1 x̂ðnÞ2 ŷðnÞ2 ẑðnÞ2 � � � x̂ðnÞNs

ŷðnÞNs
ẑðnÞNs

h i
p!ðnÞ ¼ r̂ðnÞ1 r̂ðnÞ2 � � � r̂ðnÞNs�Nh

f̂
ðnÞ
1 f̂

ðnÞ
2 � � � f̂

ðnÞ
Ns�Nh

h i
¼ r̂

! nð Þ
f̂
!ðnÞ

� �

x̂ðnÞi ¼ xðnÞi ��x
rx

(3)

C
!ðnÞ

is a concatenated list of centerline coordinates

along the s dimension of a patient (n). p!ðnÞ
is a con-

catenated list of surface distributed properties of the
sample point, which includes the radius of each sam-
ple points (rp) and its logistic/sigmoidal SGDF (fp).
Each concatenated parameter set (e.g. x̂i) was cen-
tered and normalized by the case mean (x) and stand-
ard deviation (rx). Normalized parameters are labeled
with a ‘hat’ symbol ( )̂.

The covariance matrix was calculated from M and
underwent singular value decomposition into its
eigenvalue and eigenvectors. These eigenvectors, the

principal components (PC
�!

nPC), were indexed in
descending order based on the corresponding eigen-

values. These PC
�!

s served as basis vectors for a new
coordinate system, such that the normalized shape

descriptor X̂
!ðnÞ

can be reconstructed as:

X̂
!ðnÞ

� X̂
! nð Þ

NPC
¼ wðnÞ

1 wðnÞ
nPC � � �w

ðnÞ
NPC

h i PC
�!

1

PC
�!

nPC

..

.

PC
�!

NPC

2
6666664

3
7777775

(4)

where wðnÞ
nPC is the weight of each principal component

vector (PC
�!

nPC ), and NPC is the number of principal
components used for the reconstruction (Figure 1(e)).

X̂
!ðnÞ

NPC
was then de-parameterized to obtain an

approximate reconstructed geometry. A reduced-
dimension description of a shape can be generated
from Equation (4), with NPC less than number of

aorta geometries used to generate PC
�!

s (Figure 1(f)).

Artificial geometry generation and
normality testing

The Kogolmorov–Smirnov test was used to test the

normality of the distribution of the weights wðnÞ
nPC

among subjects (n). As will be seen in the Results sec-

tion, the distributions of wðnÞ
nPC were found to be nor-

mal, allowing their means and standard deviations to
be used to define each distribution. The probability
distribution for each weight was randomly sampled
within 1 standard deviation about the mean to gener-
ate synthetic aorta models (Figure 1(g)). Out of these
artificial geometries, two were chosen to run in CFD.

Computational fluid dynamics

Once the statistical shape model had been generated,
the extent to which the model could sufficiently rep-
resent the original branched geometry was assessed.
Aside from a geometrical comparison by distance and
curvature, CFD simulations were also performed to
investigate how the flow profiles were affected due to
the geometric simplifications.

The computed geometries were then meshed with
�1 million tetrahedral elements. A mesh convergence
study is considered converged when the asymptotic
rate of convergence approaches unity (Roache 1994).
We estimated the asymptotic rate of convergence of
the WSS to be approximately 1.06 for �1 million ele-
ments, a refinement ratio of 1.7, and a safety factor of
1.25�. The detailed calculation of the asymptotic rate
of convergence and mesh convergence study plot is
available as supplementary material 3. A finer mesh
layer was used near the boundary to model the near-
wall velocity distribution accurately. A total of 231
simulations were performed: simulations across
NPC ¼ 5, 10, 15, 20, 25, 30 and the original geo-
metries of the 33 subjects.

CFD was performed with the Simvascular biofluids
software (Updegrove et al. 2017). The Simvascular
code solves the incompressible, laminar, unsteady, 3D
Navier–Stokes equations for balance of momentum
(Equation 5) and continuity (Equation 6):

q
d u!
dt

þ u!:r u!
� �

¼ �rP þr: lr u!
	 


(5)

r: u! ¼ 0 (6)

where q and l are the density and viscosity of blood,
u! is the blood velocity, P is the pressure, and t is time.
Equations (5) and (6) were solved in Simvascular

using a modified Newton–Raphson method, stabilized
by Petrov–Galerkin weighting functions to reduce the
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convective instability associated with solving Equation
(5) in its weak form (Brooks and Hughes 1982).
Spatial discretization were done linearly on tetrahedral
meshes, with a second order generalized-a method for
temporal integration (Jansen et al. 2000). The detailed
methodology used by Simvascular is available in
Esmaily-Moghadam et al. (2013, 2015).

Boundary conditions were specified as parabolic
inflow (obtained from PC-MRI), no slip at the vessel
wall, and a three element windkessel model at each
outlets, with two resistors (distal and proximal) and
one capacitor. All of the branches were described as
windkessels, whose parameters were calibrated using
differential evolution (Storn and Price 1997), with L2
norm error of the flow distribution and mean pres-
sures as the objective function, if the flowrate and
pressure values are known. Some of the subjects did
not have their flowrates measured (including artificial
cases). For these cases, boundary parameters were
interpolated and scaled based on the aortic arch vol-
ume of the known cases. Furthermore, when branches
were merged to form a single outlet due to its under-
representation in low NPC, the windkessels bounda-
ries would be merged and parallelized. Blood was
modeled as a Newtonian fluid flow with viscosity of
4 cP and density of 1.06 g/cm3 (Kim et al. 2009), and
the flow was treated as laminar. Blood is known to be
a non-Newtonian fluid, but the non-Newtonian effect
diminishes in large vessels such as the aorta (Perktold
et al. 1989; Caballero and La�ın 2015;Apostolidis et al.
2016). The flowrates obtained across different
branches were compared against 4D MRI flow dataset
at the branches, when available in some cases as val-
idation. These data are available in supplementary
material 1. The flowrates found in these cases vary
greatly (min: 130.95, max: 506.68 cm3/s) since the
dataset is from both adult and pediatric subjects (age
3–81), allowing us to test a wide range of geometry,
and boundary conditions.

Simulations were run up to the fifth cardiac cycle,
at which point the model stabilized. Each cycle was
divided into 500 timesteps with approximately 0.002 s.
Time step convergence was deemed achieved when
the residual value was less than 1E� 4 in all momen-
tum and continuity equations.

Definition of calculated parameter

The Dean number (De) is defined as

De ¼ dqvpeak
l

ffiffiffiffiffiffiffi
d
2Rc

s
(7)

where d is the approximated diameter of the ascend-
ing aorta, Rc is the centerline radius of curvature,
vpeak is the velocity magnitude at peak systole, and q
and l are the blood’s density and viscosity
respectively.

Results

Statistical shape modeling

Figure 2(a) shows cumulative sum of explained vari-
ation in the data based on the number of principal
components (NPC), and Figure 2(b,c) displays the
errors in the geometric parameters for reconstructed
geometries that were used to generate the principal
components (PC) and external dataset. Radius errors
were normalized by the original geometry’s radius,
branch location area errors were normalized with the
area of the branch holes, and centerline distance
errors were normalized by the length of the center-
line. In both data sets, the fitting errors decrease as
NPC increases, with more variation in the geometry
being accounted for by a larger basis. The effect of
additional bases on the geometry can be broken down

as contribution of r!, C
!

, and f
!

carried across dif-

ferent PC
�!

: The first few PC
�!

are dominated by radius
information, with radius error decreasing pronoun-
cedly at NPC ¼ 1 (Figure 2(b,c)). Geodesic distance
(i.e. branch location) error decreased more at moder-
ate to high NPC values. Meanwhile the centerline con-
tained the least amount of information; its error
started small and only decreased moderately even for
large NPC: When used on general external dataset, the
errors did not reach 0% at maximum number of prin-
cipal components but plateaued at NPC � 20, result-
ing in the averaged baseline error of 5.8%, 6.1%, and
3.1% for radius, branch, and centerline location at
maximum PC, respectively. Therefore, the population
used to generate the shape descriptors is general
enough to suitably represent external population’s
aortic geometry variation, or at least the population
described in Radl et al. (2022).

The result is consistent in the external dataset
geometry (Figure 2(d)). Radius changes greatly at low
NPC and stabilizes at high NPC but, both branch loca-
tion and centerline curvature continue changing
dynamically at high NPC: A video demonstrating the
evolution of all studied geometry across NPC is avail-
able as (Video 1). Radius information crossed the
�3 dB explained variance threshold at NPC ¼ 1, but
NPC ¼ 9 was required for branch location and NPC ¼
14 for the centerline.
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The distribution of aorta geometries over the first

three PC
�!

s is shown in Figure 3(a). As previously

mentioned, the first few PC
�!

s are dominated by radius
information, so the distribution of weights in the first

few PC
�!

s mainly describes the radius distributions. In

general, the first PC
�!

describes the average radius,

while the other PC
�!

s describe the variation of radius
along the centerline. This effect is illustrated by a spi-
der plot of select cases (Figure 3(b)). Case 12, with a
small vessel radius and long centerline, resulted in the

highest weight of PC
�!

1: PC
�!

2 describes the extent of
radial dilation in the ascending thoracic aortas, found

in cases such as case 3. PC
�!

3, in contrast, describes
dilation/constriction distal to the aortic arch, toward
the descending thoracic aorta, such as seen in case 15.
Cases with relatively uniform radius along the center-
line, such as case 12, shows comparable values for w2

and w3:

The contribution of different PC
�!

s to different
regions of the aorta is further illustrated in the rela-
tive magnitude of the radius found in the first few

PC
�!

s (Figure 3(c)). PC
�!

1 has a negative contribution

to radius with little variation across s and h: PC
�!

2 and

PC
�!

3, in contrast, show radius contributions centered

around zero, with positive and negative contributions

in different sections of the aorta. All three PC
�!

s
showed little h dependence.

The effect of PC
�!

on the branching pattern is
observable in the sample geometry shown in Figure
4(a), and the distribution of sigmoid geodesic distance

( f
!

) in Figure 4(b). Most of the cases have three head
vessel branches, found at s ¼ 0:1� 0:5, which were

captured in PC
�!

1: However, the head branches were
often found to be merged at the low PCs. The later

PC
�!

s generate vertical streaks of large gradient (Figure
4(b)), thus providing the necessary refinement to sep-
arate the merged branches. It is noted that NPC ¼ 20
was often required for the aorta to display three dis-
tinct branch holes.

Artificial aorta models were generated from a ran-
dom set of principal component weights ðwnPCÞ: The
weights were assumed to be independent of each
other since the diagonal terms of the covariance
matrix of the weights are about 4 orders of magnitude
higher in absolute value than the off-diagonal terms.
The weights were also tested for normality using the
Kolmogorov–Smirnov test, with minimum p-values of
0.17 across each w_npc, suggesting independent
Gaussian distribution of wnPC , with mean () and

Figure 2. (a) Cumulative sum of the explained variance across NPC for radius, centerline and branch location. (b, c) The normal-
ized errors obtained from the dataset used to generate the principal components (b) and an external dataset (c). Error bars are
standard errors. (d) Geometry for reconstructed aorta for geometry used for generation of principal components (left) and external
dataset (right). Full-opacity image is reconstructed aorta, and semi-transparent image is the original geometry.
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standard deviation () . The fit of Gaussian distribu-
tion for several wnPCs and sample artificial geometry
shown in Figure 5(a). lwn

rwn : Artificial geometries
were then generated from uniform random sampling

within lwn
61rwn : The main issue with the generated

artificial cases came from the modeling of the
branches. Despite having reasonably located branches,
only 3 out of 20 cases had the 3 distinct branch holes

Figure 3. (a) Distribution of geometry over the first three PC
�!

: ðbÞ Spider plot of first three PC
�!

weights of sample cases. (c)
Distribution of r(h, s) for the first three PCs.

Figure 4. (a) Evolution of branches across NPC for case 19: ðbÞ Distribution of sigmoidal signed geodesic distance f
!

(h, s) for
first three PCs.
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at NPC ¼ 20, while others had them merged (Figure
5(b)). Meanwhile, the curvature of the centerline and
the variation of radius along the centerline appear to
be reasonable for all the artificial cases generated.
CFD was performed on two of the artificial geome-
tries, one of which is shown in Figure 5(c). The artifi-
cial geometries generated similar flow patterns as the
ones obtained from clinical dataset: systolic flow was
dominated by Dean flow, backflow at the branches
were observed during end systole, and regions of high
WSSs were found near the location of the branches.

CFD comparison

WSS and pressure fields were examined for all CFD
simulations, and comparisons between the

reconstructed and original geometries were made.
Additionally, transverse WSS values were examined,
with similar pattern observed as the WSS. The trans-
verse WSS comparison is available in supplementary
material 3. Any claim of significant difference in this
study is calculated based on the paired t-test, with p-
value <0.05 showing significant difference across NPC:

The full table of comparisons for this statistical ana-
lysis is available as supplementary material 2. First,
the time and surface-averaged wall pressure across
NPC are shown in Figure 6(a). The time- and surface-
averaged pressures across NPC did not vary signifi-
cantly from the original geometry for most of the
cases (paired, two-tailed t-test’s p-values >0.05) as
flow impedances were mainly determined by the out-
flow windkessel parameters. Furthermore, resistance

Figure 5. (a) Cumulative distribution function for selected wnpcnPC and the corresponding Gaussian model: The weight w1 has
the lowest Kolmogorov–Smirnov test p-value of 0.17. (b) Sample synthetic geometries. (c) CFD results for an geometry in (b).
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of the aorta, as a function of radius and centerline
length, was already well represented in the lower NPC:

Although the lower NPC cases often had merged
branches of the head vessels, if the windkessel param-
eters were also merged in parallel, the aberrant
branching pattern hardly affected the surface aver-
aged pressures.

Similar to the pressure, the surface and time-aver-
aged wall shear stress (SA-TAWSS) did not differ sig-
nificantly from the original geometry at NPC � 10
(paired, two-tailed t-test’s p-values >0.05), and its
error decreased with increasing NPC (Figure 6(a)). For
NPC ¼ 5, the geometrical differences were sufficient

to cause WSS differences from the original geometry
with p-value of 0.02. Moreover, the distribution of the
WSS error on the surface is more sensitive to the
local geometry of the aorta (Figure 6(b)). While the
surface-averaged values at NPC � 10 are similar, the
WSS pattern can differ (see Video 2, Figures 6(c)
and 7).

Surface distributions of Euclidean distance,
Gaussian curvature, and WSS errors are shown in
Figure 6(c). There were localized regions that appear
to show correlation between these errors. The inlet
region has the highest correlation between TAWSS
and distance/curvature error. The branched regions

Figure 6. Time and surface averaged error in pressure and WSS across NPC: (a) Averaged over the whole wall. (b) Location specific
error; error bars in (a) and (b) are standard errors. (c) Distribution of the location specific errors. Pressure and WSS errors are nor-
malized to the original geometry’s value. Euclidean distance and Gaussian curvature errors were normalized by the centerline
length. Errors were correlated at branch locations (dashed line), aortic inlet (solid line), and the descending thoracic aorta (dot-
ted line).
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also have some correlation: the highest WSS error
occurred where the branches were found (Figure 6(c))
and is also the location of highest WSS (Figure 7).
This error was due to misrepresentation of the
branches, resulting in high curvature and distance
error, particularly at low NPC: Another region of note
is at the bend into the descending aorta, distal to the
head branches. There is a band of high WSS and
curvature error, which corresponds to the location of
aneurysm or stenosis after the aortic arch, toward the
descending thoracic aorta. Aside from these regions,
there is little correlation between local WSS errors
and local geometric based errors (Pearson’s correl-
ation coefficient, r2 < 0.5).

Figure 7 describes the distribution of the WSS for
different NPC values for a case in which the branching
pattern varied with NPC: The systolic flow did not dif-
fer significantly over NPC: The systolic flow is domi-
nated by the presence of two counter-rotating
vortices, forming at a Dean number (Equation 7) in
the range of 200–1400. As the vortices travelled down
the descending aorta, they left a trail of low WSS at
the descending aorta, appearing as reddish-brown
streak in Figure 7 (t ¼ 0.25T). The flow behavior is
primarily described by the Dean number, which did
not differ significantly across NPC: The averaged error
in Dean number at NPC ¼ 5 is about 12% and
decreases with increasing NPC: Therefore, the systolic

flow profile and WSS pattern remained consistent
across NPC:

The dominance of Dean flow and curvature
changes are observable in the flow profile at the cross
sections along the tube (Figure 8). During mid-sys-
tole, the flow pattern mainly follows the expected
Dean flow along the cross sections. As NPC increases,
the Dean vortices’ symmetry axis was rotated to
match the original geometry’s result in planes
upstream of the branch (Figure 8, plane 1). The axial
symmetry of the Dean vortices follows the inner to
outer curvature of the geometry (Tallapragada et al.
2015), and therefore its effects was mainly caused by
changes in curvature across NPC: At the branch loca-
tion (Figure 8, plane 2), the same axial rotation was
observed. However, the branch caused the vortices to
break their symmetry: the vortex closer to the branch
shrunk as it fed flow into the branch, allowing the
other to expand. This phenomenon is just as import-
antly affected by the curvature, since the rotation of
the symmetry axis allows only one of the vortices
have access to the outflow. The effect of branches
quickly dissipates downstream (Figure 8, plane 3), as
the vortices regained their symmetry. The Dean flow
symmetry is recovered within 10% of the centerline
length away from the branch.

The largest difference in flow was seen at end sys-
tole, when backflow may occur at the branches and

Figure 7. Wall shear stress contours overlayed on vortices, visualized based on Q-criterion, for reconstructed geometries. The top
view displays variation in branching pattern across NPC : BCA: brachiocephalic artery, LSA: left subclavian artery, LCCA: left com-
mon carotid artery. Video representation is available as Video 2.
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descending aorta. This backflow effect, however, is
not a product of the branch shape, but the windkessel
boundary conditions used. At this time, the bulk flow
through the aortic valve was low, which allowed flow
to fluctuate (Figure 7, t¼ 0.5T). The flow also varied
downstream or upstream of the branch, with remnant
effects of the Dean vortices symmetry axis rotation
present. However, the effect of backflows on average
pressure and WSS are small since their flowrates
are low.

The WSS variation observed was mainly due to the
decrease in hydraulic diameter, as the branches split
flow into smaller lumen areas, resulted in higher WSS
in the daughter than in the parent vessel. This effect
is less pronounced at lower NPC, where the three
branches were merged. Merged branches have higher
lumen area to the wetted perimeter ratio. Therefore,
at consistent flow split, the merged branches’ larger
hydraulic diameter would result in lower WSS than
separate individual branches (up to 70% difference).
However, WSS during the end-systole to diastole
period have lower magnitude than during mid-systole,
and therefore WSS variation during end-systole, and
diastole, did not affect the temporal average value
much. Yet, the combined effect of branch misrepre-
sentation and minor deviation in the Dean flow
caused the flow at NPC ¼ 5 to be sigificantly different
from the original (p< 0.05).

Discussion

We have demonstrated a method to include branch-
ing in the statistical shape representation of the aorta,
which raises an obvious question of whether accur-
ately describing these branches is important. The
branching pattern did not significantly affect the glo-
bal averaged measures: SAWSS did not change signifi-
cantly for NPC � 10, and surface-averaged pressure

did not change significantly across NPC: Both surface-
averaged and location-specific pressure errors were
low across NPC (Figure 6(b)), as the shape of the aorta
only contributes a small portion of the overall flow
impedances. While variation in branches, such as
branching angle, can cause pressure drops across ves-
sels to vary, the resulting changes in pressure are gen-
erally small (Cho et al. 1985). This effect only
becomes significant when applied repeatedly to a frac-
tal model of arterial branches (Gabry�s et al. 2005),
which affect the downstream windkessel parameters.

To be clear, the relatively small changes in global
averaged pressure and WSS do not suggest that mod-
eling of the branches is unnecessary. These branches
are responsible for diverting 30–40% of aortic flow to
the head. Failure to model this flow split would surely
affect downstream fluid forces. In a study of flow
simulation in aortic dissection subjects with and with-
out total removal of the head branches, the WSS in
the true lumen were observed to decrease by 40% in
one patient and 70% in another (Jiang et al. 2019). In
contrast, our study did not fully remove the branches,
thus, the effect is much less drastic, with WSS
decreases at low NPC, by 6% and 2% for NPC ¼
5 and 10 respectively. It also is necessary to model
the branches accurately if a more detailed flow profile
near or surrounding the branches are required.
Accuracy in the local flow profile is particularly
important in studies of atherosclerosis, in which pla-
que formation often occurs near the location of these
branches (Khoury et al. 1997). When such detail is
not needed, however, a crude representation of the
branches is sufficient. In our case, sufficient accuracy
might be obtained at NPC ¼ 10:

WSS was affected by more localized variation in
wall structure, but its surface averaged values were
sufficiently captured at NPC � 10: At NPC � 10:
However, high WSS error was still observed locally at

Figure 8. Flow field for cross sections along the aorta. Color contour shows magnitude of the out of plane velocity, with positive
out of plane velocity indicating proximal-to-distal flow. Black dotted line at mid-systole marks the axes of symmetry of Dean vorti-
ces. Black star in Plane 2, mid-systole, marks the location of vortex core that shifts toward outflow branch, breaking vor-
tex symmetry.
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the branch locations, the main arch, and near the aor-
tic root. The region near branches was also the loca-
tion with high WSS and its associated error. In
cylindrical tubes, the presence of branches skews the
peak velocity closer to where the branch is found (He
and Ku 1996), resulting in greater shear local rates
near branches. High WSS near branched region was
also found in other computational model (Lantz et al.
2012) and clinical data (Huo et al. 2008; Lantz et al.
2012). Thus, if one is concerned about the flow field
near the branches, then accurate representation of
their location is – unsurprisingly – important.

Just as important is the dependence of the flow in
the aorta on its curvature. The curvature of the aorta
introduces secondary flow patterns that spiral down-
stream, depending on its curvature (Dean 1928). There
are also reports associating the risk of aneurysm with
the tortuosity of the vessel (Pappu et al. 2008; Kli�s et al.
2020). Systolic WSS is dominated with this type of flow,
with high errors found near the aortic root, where the
curvature affects the angle of inflow boundary condition
and therefore the inlet WSS error. Therefore, low NPC

maybe sufficient to describe the average WSS distribu-
tion, but a high NPC is required to obtain more accurate
surface distribution.

We emphasize that this work focused on shape rep-
resentation, not on producing a realistic model of aortic
flow. We simplified the flow in the aorta to allow the
multiple simulation runs needed for comparison across
cases. Here, blood was modeled as Newtonian, whereas
non-Newtonian flow could produce more skewed peak
velocity to the branch location (Chen and Lu 2004) and
possibly an increase in the WSS found near branches.
However, the non-Newtonian effect of blood is scale
dependent; in the aorta, the size of the blood cells and
its clusters gets much smaller relative to the vessel
diameter and its behavior would tend toward
Newtonian (Pialot et al. 2021). a comparison of CFD
model of the aorta showed close prediction at systole
and slight differences in diastolic WSS in Newtonian
models as compared to the non-Newtonian ones
(Karimi et al. 2014; Caballero and La�ın 2015).
Moreover, the aorta deforms considerably in response
to flow pressures (Goergen et al. 2011; Campobasso
et al. 2018), which were not modeled in this study. Still,
the comparative nature of this study would alleviate
some of the modeling errors.

Conclusion

We performed PCA of the aorta with models
accounting for the presence of head branches. Our

method proved successful in capturing aortic geom-
etry, branch geometry, within � 20 principal compo-
nents. This result is promising but also demonstrates
the need for a high number of principal components
to capture geometric details. CFD was then performed
on the geometries reconstructed using various NPC to
investigate the effect of various branching patterns on
the flow profiles. Time- and wall-surface-averaged val-
ues and location-specific values of pressures did not
change significantly over NPC: In contrast, local WSS
values were more sensitive to the changes in the
geometry. Averaged WSS value did not deviate sig-
nificantly for NPC � 10, but the location specific
errors could be particularly high in regions where the
branches are found, since the branches could be mis-
represented under low NPC:
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